拒絕成為馬奇諾防線

Windows Security Hardening

王偉任 (weithenn.org)

Maginot Line

http://aka.ms/MCRA

馬其諾防線 (Maginot Line)

- 全長 700 公里,鋼筋混凝土建造而成,造價 50 億法郎。
- 馬奇諾防線可以防禦多類攻擊包括空對地轟炸、大口徑火炮轟擊,其內部擁有各式火炮壕溝、堡壘、廚房、發電站屬層、上廠等各類軍事及生活設施,較大的工事中還鋪設有有軌電車的軌道。
- 德軍後來沒有進攻防線正面防區,他們繞道至法國北部。然而由於法比邊界的阿登高地地形崎區,不適合德國作戰部隊通過,因此法軍在當地的防禦薄弱,沒有多加防備。不到一個月後法國投降。

Microsoft Cybersecurity Reference Architecture

http://aka.ms/MCRA

Shielded VM

http://aka.ms/shieldedvms

Summary of the high-level attack types

Attack applications and infrastructure

Attack the virtualization fabric itself

- 1. Compromised privileged accounts
- 2. Unpatched vulnerabilities
- 3. Phishing attacks
- 4. Malware infections

- 5. Compromised fabric exposes guest VMs
- 6. Easy to modify or copy VM without notice
- 7. Can't protect VMs with gates, walls, locks, etc.
- 8. VMs can't leverage H/W security (e.g. TPMs)

Protect virtual machines Challenges in protecting high value virtual machines

Any seized or infected host administrators can access guest virtual machines

Impossible to identify legitimate hosts without a hardware based verification

Tenants VMs are exposed to storage and network attacks while unencrypted

Confidently protect sensitive customer data: Designed for 'zero-trust' environments

Hardware-rooted technologies to separate the guest operating system from host administrators

Virtual Secure Mode

Process and Memory access protection from the host

Guarded fabric to identify legitimate hosts and certify them to run shielded tenant Generation 2 VMs

Host Guardian Service

Enabler to run Shielded Virtual Machines on a legitimate host in the fabric

Virtualized trusted platform module (vTPM) support to encrypt virtual machines

Shielded VM

Bitlocker enabled VM

Protect virtual machines

How it works with Windows Server and System Center

Shielded VMs

Spotlight capabilities

Host Guardian

Service

Shielded Virtual Machines can only run in fabrics that are designated as owners of that virtual machine

Shielded Virtual Machines will need to be **encrypted** (by **BitLocker** or other means) in order to ensure that only the designated owners can run this virtual machine

You can **convert** a **running Generation 2 virtual machine** into a
Shielded Virtual Machine

Bare Metal vs. Regular VM vs. Shielded VM

Shielded VM

Use BitLocker to encrypt the disk and state of virtual machines protecting secrets from compromised admins & malware

Host Guardian Service

Attests to host health releasing the keys required to boot or migrate a Shielded VM only to healthy hosts

Generation 2 VM

Supports virtualized equivalents of hardware security technologies (e.g. TPMs) enabling BitLocker encryption for Shielded VMs

virtual machine

Shielded VMs: a few Spotlights

Generation 2 VMs only

Leveraging virtual EFI, Secure boot, virtual TPM

Hyper-V Host: Windows Server 2016

Guarded host requires Windows Server 2016 Datacenter edition

Shielded Guest VM OS support

Windows 8 / Windows Server 2012 or newer

vTPM not tied to physical TPM

Permits VM mobility, e.g. Live Migration

Guarded Fabric: Attestation Modes

Admin-trusted

Simplified Setup/Configuration

- Setup an Active Directory trust + register group
- Authorize a Hyper-V host to run shielded VMs by adding it to the Active Directory group

Leveraging Existing H/W

 H/W needs to support Hyper-V on Windows Server 2016

Weaker levels of assurance

- Fabric-admin is trusted
- No hardware-rooted trust or measured-boot
- No enforced code-integrity

INITIAL ADOPTION SIMPLIFIER

TPM-trusted

Complex setup/configuration

- Register each Hyper-V host's TPM (EKpub) with the guardian service
- Baseline CI policy for each different hardware SKU
- Optional: Deploy HSM and use HSM-backed certificates

Specific host hardware required

Needs to support TPM v2.0 and UEFI 2.3.1

Highest levels of assurance

- Fabric-admin untrusted
- Trust rooted in hardware
- Compliance with code-integrity policy required for keyrelease (attestation)

RECOMMENDED STEADY-STATE

Trust chain: TPM-trusted attestation

Host Guardian Service

Attestation: validates the health of the host (boot and CI measurements)

Requires: UEFI 2.3.1 and TPM 2.0 for guarded hosts

Trust chain: admin-trusted attestation

Host Guardian Service

Attestation: no boot measurements or code-integrity policies are taken into account

Shielded VMs: two modes of shielding

Shielded

- OS disk encrypted, Live Migration traffic encrypted, use vTPMs to seal keys,
 VMconsole connections blocked, PowerShell Direct blocked, integration components blocked, VM runs as protected process (light)
- Common use-case: public cloud, private cloud requiring segregation of admin duties

Encryption Supported

- OS disk encrypted, Live Migration traffic encrypted, use vTPMs to seal keys
 - VMconsole connections permitted
 - PowerShell Direct permitted
- Common use-case: compliance, private cloud with trusted admins, etc.

NOTE: a VM's shielding type is dictated/configured by the Shielding Data from which the shielded VM is born

Demo

Regular VM (Non-Shielded VM)

Demo Shielded VM

Hyper-V Shielded VM: Compliance Mapping

	ISO 27001: 2013	PCI DSS 3.2	FedRAMP; NIST 800-53 Revision 4
Enforcing Separation of Duties	A.6.1.2– Segregation of duties	6.4.2 – Separation of duties between test and production environments	AC-5 – Separation of Duties
Implementation of	operational environments	6.4.1 – Test and Production Environment Separation 7.2 – User access control on need-to- know basis 7.2.3 – Default "deny-all" setting 8.7 – Restricted access to databases	AC-6 – Least Privilege AC-6 (10) – Prohibit Non-Privileged Users from Executing Privileged Functions SC-2 – Application Partitioning SC-4 – Information in Shared Resources
Stored in Shared Resources		containing cardholder data	
Protection of Data at Rest	A.8.2.3 – Media Access	 3.4 – Verifying stored PAN is unreadable 3.4.1 – Disk encryption usage and access control 6.5.3 – Insecure cryptographic storage 	
Security Function Verification and Integrity Monitoring	None	11.5 – Change-detection mechanism deployment	SI-6 – Security Function Verification SI-7 – Software, Firmware, and Information Integrity

Credential Guard

http://aka.ms/privsec

The Modern Enterprise

Microsoft Azure

Office 365

3rd Party SaaS

Admin Environment

High Value Assets

On-Premises Datacenters

Intranet and Remote PCs

Mobile Devices

Customer and Partner Access

Anatomy of an attack

What do most attacks have in-common?

Phishing attacks

Stolen credentials

Pass-the-hash (PtH) attacks Insider attacks

Fabric attacks

Central risk: Administrator privileges

Most attack-types seek out & exploit privileged accounts

These privileged accounts have the keys to the kingdom; we gave them those keys decades ago

But now, those administrators' privileges are being compromised through social engineering, bribery, coercion, private initiatives, etc.

Identity is the new security "perimeter"

Active Directory and Administrators control all the assets

Identity is the new security "perimeter" under attack

Active Directory and Administrators control all the assets

operations

Phase 1 Critical Mitigations: Typical Attack Chain

Compromises privileged access

24-48 Hours

- 1. Beachhead (Phishing Attack, etc.)
- 2. Lateral Movement
 - a. Steal Credentials
 - b. Compromise more hosts & credentials
- 3. Privilege Escalation
 - a. Get Domain Admin credentials
- 4. Execute Attacker Mission
 - a. Steal data, destroy systems, etc.
 - b. Persist Presence

Phase 1 Critical Mitigations: Credential Theft Demonstration

Demo

Without Credential Guard (Win 7 & Win 10)

Demo

Windows 10 with Credential Guard

Remote Desktop Connection

Remote Desktop Connection

Demo

Standard Remote Desktop Connection

RDP Server with Credential Guard

Remote Desktop Connection and a server protected with Credential Guard

Demo

RDP Server with Credential Guard

RDP Client with Remote Credential Guard

Remote Credential Guard

Demo

RDP Client with Remote Credential Guard

Q&A Thanks you!

